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ABSTRACT 

This brief presents the chip implementation of a support vector machine (SVM)-based speaker verification system. 

The proposed chip comprises a speaker feature extraction (SFE) module, an SVM module, and a decision module. 

The SFE module performs autocorrelation analysis, linear predictive coefficient (LPC) extraction, and LPC-to-

cepstrum conversion. The SVM module includes a Gaussian kernel unit and a scaling unit. The purpose of the 

Gaussian kernel unit is first to evaluate the kernel value of a test vector and a support vector. Four Gaussian kernel 

processing elements (GK-PEs) are designed to process four support vectors simultaneously. Each GK-PE is designed 

in the pipeline fashion and is capable of performing 2-norm and exponential operations. An enhanced CORDIC 

architecture is proposed to calculate the exponential value. As well as the Gaussian kernel unit, a scaling unit is also 

developed for use in the SVM module. The scaling unit is used to perform scaling multiplications and the remaining 

operations of SVM decision value evaluation. Finally, the decision module accumulates the frame scores that are 

generated by all of the test frames, and then compare it with a threshold to see if the test utterance is spoken by the 

claimed speaker. This designed chip is characterized by its high speed and its ability to handle a large number of 

support vectors in the SVM. The prototype chip is a semicustom chip that is fabricated using Taiwan Semiconductor 

Manufacturing Company 0.90-nm CMOS technology on a die with a size of - 7.9 mm X 7.9 mm. 

Keywords:- VLSI Design; SVM; CORDIC; Gaussian kernel; CMOS 

INTRODUCTION 

A biometric system makes a pattern recognition decision in accordance with the biometric features extracted from a 

human being. In recent years, various human characteristics such as the face, speech, fingerprint, and iris have been 

considered as discriminative features for automatic biometric recognition. In this brief, it is addressed on hardware 

design of a speech based biometric system, i.e., speaker recognition system. Basically, speaker recognition systems 

are divided into two main categories: speaker identification and speaker verification. In a speaker identification 

system, an unknown speaker is identified as one of the speakers in the database. In a speaker verification system, a 

person’s identity is validated based on his/her speech feature. 

Speaker recognition has been extensively studied for the last decades. Feature extraction and classifier design are 

the two essential issues in a speaker verification system. For the feature extraction, the most frequently adopted 

speaker features are cepstral coefficients. The cepstral coefficients can be extracted by two dominant approaches. 

One is the parametric approach, which is developed to match closely the resonant structure of the human vocal tract 

that produces the corresponding speech sound. This approach is mainly based on linear predictive analysis. The 

obtained linear predictive coefficients (LPCs) can be converted to LPC cepstral coefficients (LPCCs). The other one 

is the nonparametric method modeling the human auditory perception system. Mel frequency cepstral coefficients 

(MFCCs) are used for this purpose. Recently, a feature called the supervector, which is derived by concatenating the 

mean vectors of the components of a Gaussian mixture model (GMM), has received considerable interest. The 

dimensionality of a supervector typically exceeds 10000. Besides, the supervector requires higher computational 

load and larger buffer size than cepstral coefficients. Therefore, acoustical LPCC features are used herein instead of 

supervectors. In the classifier design, modern speaker recognition systems apply GMMs. The widespread use of GMMs 

in modeling speakers is based on the efficient parameter estimation procedures that involve maximizing the 



International Journal of Inventions in Engineering & Science Technology                        http://www.ijiest.in 

 

(IJIEST) 2020, Vol. No. 6, Jan-Dec                                                         e-ISSN: 2454-9584; p-ISSN: 2454-8111 

 

97 

 

INTERNATIONAL JOURNAL OF INVENTIONS IN ENGINEERING AND SCIENCE 

TECHNOLOGY 

likelihood of the model data. However, as a maximum likelihood- derived decision surface is not optimal, 

discriminative approaches are essential for creating robust and more accurate models. The support vector machine 

(SVM), a discriminative approach, has recently attracted much attention because it discriminates between the classes 

and can be used to train nonlinear decision boundaries efficiently. 

Various hardware designs for speech or speaker recognition systems have been presented. However, in most of the 

relevant works, conventional recognition algorithms such as neural net- work, hidden Markov model, and dynamic 

time warping have been implemented. Hardware implementations for modern SVM-based speech or speaker 

algorithms are few. Manikandan et al. developed a speech recognition system using TMS320C6713 floating point 

digital signal processor. This system adopted SVM as the recognition engine and was capable of recognizing isolated 

digits. However, this system used a general purpose DSP chip to program the speech recognition algorithms. A 

text-independent SVM-based speaker identification system was developed. In this investigation, VLSI architecture 

of a sequential minimal optimization (SMO) algorithm for SVM learning was focused. The proposed VLSI 

architecture consisted of three modules and was tested using a Cyclone II 2C70 field programmable gate array 

(FPGA). The disadvantage of this paper is that the feature extraction and speaker identification processes were 

both performed in PC. Another work further extended the VLSI SMO and presented a hardware and software co-

design solution for a fast-trainable speaker identification system. The proposed system consisted of a training 

phase and a multiclass identification phase. The SMO training algorithm was realized as a dedicated VLSI module, 

i.e., the hardware component. The feature extraction and SVM voting strategy were implemented by software. 

This system was implemented on a Socle CDK platform with an AMBA-based Xilinx FPGA and an ARM926EJ 

processor. However, this paper used linear kernel in SVM. Although the heavy computational load in evaluating a 

decision function can be avoided using a compaction technique introduced by the use of the linear kernel, the 

recognition performance of the linear kernel is much worse than that using the Gaussian kernel. Furthermore, the 

aforementioned previous works either used general-purpose DSP or used FPGA plus processor to implement 

SVM-based speech or speaker recognition algorithms. The cost of the resulting product would be high and power 

dissipation would be a problem. Particularly, low power dissipation is a key requirement for portable applications. 

In this brief, an application-specific integrated circuit (ASIC) chip is presented for SVM- based speaker verification. 

The reason that an ASIC solution is selected is ASIC chips have the following advantages over FPGAs, DSPs, and 

microprocessors. First, the power dissipation of the ASIC is lower. Second, the cost of the resulting product is lower. 

Third, the speaker feature extraction (SFE) module and an SVM module were implemented as intellectual property 

(IP) cores, which can be easily reused and incorporated into designs of other systems or chips. The proposed chip 

is used in the speaker verification phase, after the training phase has already been completed using a PC. To ensure 

satisfactory verification performance, the Gaussian kernel is used in the SVM engine. The proposed chip design 

is expected to be used in the applications that require both the outputs of speech and speaker recognition, such as 

conversational spoken dialog systems and personal command systems. In addition, to improve speech recognition 

performance, speaker recognition can be used as a front-end process to select the most appropriate speech 

recognizer. In such systems, speech content and speaker’s identity are recognized simultaneously. 

 
Figure 1.Block diagram of proposed speaker verification chip. 
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SYSTEM OVERVIEW 

The block diagram of the proposed SVM-based speaker verification chip is shown in Fig.1. The SFE procedure is 

the same for both the training and the verification phases. First, speech data is preemphasized through a low order 

digital system. The preemphasized speech data are then blocked into overlapping frames so that smooth LPC 

spectral estimates can be obtained. After applying a window function to the speech frame, autocorrelation and 

linear predictive analyses are performed to obtain the LPC coefficients. Then, the cepstral coefficients are obtained 

by converting the LPC coefficients. The obtained cepstral coefficients are called LPCC or LPC cepstrum and are 

used as the speaker features in this brief. 

The SVM is used to achieve speaker verification. In the enrollment phase, the hyperplane of a 2-class SVM is learned 

with the target side against the background side. Each enrolled speaker corresponds to a 2-class SVM, and 

constructs target side by collecting his own training feature vectors. The background side, which is the same for all 

of the enrolled target speakers, is constructed by collecting training feature vectors from a large number of 

speakers. In the verification phase, an utterance from an unknown speaker is first transformed into a sequence of 

test feature vectors. Each test vector is fed to the SVM to generate the frame score. The frame scores for all of the test 

vectors are summed to yield an overall score to determine whether the test utterance was spoken by the claimed 

target speaker or not. The proposed speaker verification chip consists mainly of a SFE module, an SVM module, a 

decision module, and a control module. The advantage of the core-based design for SFE and SVM is its flexibility 

that allows the designer to develop a new system in short time using suitable IP cores. For the SFE module, since 

the adjacent frames are overlapping, an intelligent architecture is used to perform the autocorrelation analysis 

without the use of a huge buffer. This architecture allows the input buffer for the SFE module to contain only two 

registers in- stead of a huge buffer. The SVM module includes a Gaussian kernel unit and a scaling unit. For each 

test frame, the Gaussian kernel unit computes the kernel values of a test vector and all of the support vectors using 

four processing elements. Based on these obtained kernel values, the scaling unit completes the remaining 

operations of decision function evaluation to output the frame score. This procedure is repeated for all of the frames. 

The decision module can, thereby compute the overall score by summing all of the frame scores. This obtained 

overall score is compared with a threshold to determine whether the test utterance is spoken by the person who 

claimed to have spoken it. 

 

ARCHITECTURE OF SVM MODULE 

A. SVM Theory 

The SVM theory is a statistical technique and has drawn much attention on this topic in recent years. An SVM 

is a binary classifier that makes its decisions by constructing an optimal hyperplane that separates the two classes 

with the largest margin. It is based on the idea of structural risk minimization induction principle that aims at 

minimizing a bound on the generalization error, rather than minimizing the mean square error. For the optimal 

hyperplane w . x + b = 0, w ∈ RN and b ∈ R, the SVM decision function for classifying an unknown point x is defined 

as  

 

 

 

 

 

where NS is the support vector number; yi is the ith support vector; αi is the corresponding Lagrange multiplier; and 

ti ∈ {−1, +1}describes, which class yi belongs to. In most of the cases, searching suitable hyperplane in input space 

is too restrictive to be of practical use. The solution to this situation is mapping the input space into a higher 

dimension feature space and searching the optimal hyperplane in this feature space. Let z = φ(x) denote the 

corresponding feature space vector with a mapping φ from RN to a feature space Z. It is not necessary to know about 

φ. We just provide a function k (. , .) called kernel, which uses the points in input space to compute the dot 

product in feature space Z, that is 
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Finally, the SVM decision function becomes 

Functions that satisfy Mercer’s theorem can be used as kernels. Typical kernel functions include linear kernel, 

polynomial kernel, and Gaussian kernel. 

B. Proposed SVM Module 

The purpose of the SVM module is to evaluate the SVM decision function for a test point, which is a 10-D LPCC 

vector. According to the equation just above, kernel evaluations must be carried out at an unknown test point x with all 

of the support vectors that were obtained by SVM hyperplane training. To ensure satisfactory classification 

performance, a large number of support vectors must generally be used. Completing all of the kernel evaluations is 

thus a computationally intensive task. Therefore, an efficient SVM computing architecture is essential so that both real-

time speaker verification and low power dissipation can be accomplished. 

 

Figure 2: Block diagram of SVM module 

The proposed system adopts the Gaussian kernel, which performs excellently in the simulation. The Gaussian 

kernel is defined by  

 
where x and y are the two vectors whose kernel value is evaluated, and σ is the standard deviation. 

In this SVM-based speaker verification, each frame forms a test vector and each test vector performs kernel 

evaluations with all of the support vectors. As stated previously, the last two equations impose a heavy 

computational load so two specific architectures are designed to compute them herein. Fig.2  shows the block 

diagram of the proposed SVM module, which mainly comprises of two computational units, a Gaussian kernel 

unit and a scaling unit, which calculate the equations. 
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Figure 3: Architecture of Gaussian kernel unit 

 

C. Gaussian Kernel Unit 

The Gaussian kernel unit is designed to perform the Gaussian kernel evaluations of a test vector and all support 

vectors. Fig. 3.2 shows the proposed architecture of the Gaussian kernel unit, which consists of four Gaussian 

kernel processing elements (GK-PEs) and ï ň Ąve  serial- to-parallel units (SPUs). For a test vector, each GK-PE 

performs its Gaussian kernel evaluation with one of the support vectors. Four GK-PEs are adopted in the Gaussian 

kernel unit so four support vectors can be processed simultaneously. 

Figure 4: Block diagram of the Exp PE 

 
Figure 5: CORDIC circuit 
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The above-mentioned SFE module generates each dimension of an LPCC vector sequentially. An SPU is used to 

transform the serially input data to data that are input in parallel for GK-PE. One SPU receives the test vector 

while each of the other four SPUs takes its corresponding support vector. Each GK-PE incorporates a norm PE 

(Norm PE) and an exponential PE (Exp PE). The architectures of the two PEs are described in detail as follows.  

Norm PE: The Norm PE is responsible for calculating −  (x − y) 
 2

/2σ2, where x = (x1, x2, ... , x10) denotes an 

LPCC test vector, and y = ( y1, y2, ... , y10) represents an LPCC support vector. The Norm PE ï ň Ą rst  computes 

the norm square, x − y 
 2

= (x1 − y1)2 + (x2 − y2)2 + ... + (x10 − y10)2, with an adder tree to sum the square values 

of difference in each dimension. The standard deviation is taken as one. Hence, only the compliment of a 2 and 

a right-shift operation are required to obtain −(x − y)2/2σ2 f rom   x − y 
 2

. 

(1) Exp PE: Among the several hardware implementation options in exponential operation, the CORDIC method 

is used. The CORDIC usually occupies a small area of hardware because it merely uses several adders and 

shifters. With the unfolding technique, CORDIC can achieve high speed. 

The Exp PE in Fig. 4  has a CORDIC circuit and an adder/subtractor. The constant K is precalculated and stored 

in memory. Fig 5  shows the CORDIC circuit, which is capable of performing the angle updating operations. One 

ROM is used in the CORDIC circuit to store the precalculated t anhâ̂ĹŠ1(2â̂ĹŠi ) . In the CORDIC circuit, more 

iterations correspond to higher numerical precession in cos h(z) and sin h(z). Simulation results reveal that 13 

iterations yield a satisfactory numerical precession. 

However, the above circuit can only handle the input z with a value of between -1 and 1. With a z above this 

range, a large error arises in the resulting exponential value. To solve this problem, a numerical transformation 

is provided. Any number z ∈ R +̂   

 

can be expressed as where p ∈ Z+andz1 ∈ [−1, 1]. 

 

 
Figure 6: Architecture of Exp PE 
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i=1 

 

Accordingly, performing the exponential operation on Z yields 

Based on the above equation, ez is replaced by ez1 with z1 ∈ [−1, 1], and then a right shifting by P bits is conducted. 

Accordingly, the architecture of Exp PE is developed as shown in Fig. 3.5. 

 

D. Scaling Unit 

The first task in the scaling unit is to multiply each k(xi, x) that is generated from the Gaussian kernel unit by the 

corresponding scaling coefficient, αiyi, which is obtained in the training phase and stored in ROM. In line with the 

Gaussian kernel unit, four multipliers perform the scaling multiplications on the four kernel values that are received 

from the Gaussian kernel unit in parallel. A two-stage adder tree is used to sum these four multiplications. An 

accumulator is adopted to accumulate each of the four scaling multiplication results until the kernel values of all of 

the support vectors have been scaled. Finally, the stored bias constant b is added to the sum of the results of the scaling 

multiplication, Σn  αitik (x, yi), to generate the SVM decision value. The decision value of each LPCC test vector is 

sent to the decision module to make an overall decision. 

 

Implementation Results 

The speaker verification system using MATLAB software is built. The sampling rate of the input speech is 16 KHz. 

The frame size is 256 samples with 128 sample frame overlapping. 

The required finite word length accuracy is analyzed first by software simulation, allowing for implementation of 

the floating-point program by a fixed-point structure. The design uses a 16-bit fixed-point format, which comprises 

four bits for the integer part and 12 bits for the fractional part. To evaluate the performance of the speaker 

verification system, the experiment is conducted on spoken data of 200 speakers were taken from the NIST SRE 

database. In this experiment, three numbers of support vectors - 3000, 6100, and 12500 were used to train the 

speaker model. The equal error rates (EERs) that were generated using 3000 and 6100 support vectors were 

approximately 8.27% and 7.92%, respectively. A total of 12500 support vectors yielded an EER of around 7.51%. 

The experimental results reveal that using more support vectors may slightly improve the EER. The speaker 

verification performance of the presented VLSI design is satisfactory and close to that of other SVM-based speaker 

verification systems that also use acoustical speech features such as MFCC. 

The chip design was implemented using the Taiwan Semiconductor Manufacturing Company (TSMC) 0.90 nm 

CMOS technology and the cell-based design ï ň Ć  ow. Hardware simulation of the proposed chip architecture was 

conducted by Verilog HDL where a prototype chip was designed using Cadence’s front- and back-end tools. Fig. 

4.2 shows the layout view of the chip. The total gate count is around 1731 K with a die size of roughly 7.9mm X 

7.9 mm. With a power supply of 0.9 V, the design can achieve 100 MHz in the worst case; in addition, the power 

dissipation is roughly 8.12 mW at this speed. Low power dissipation makes this chip appropriate for portable 

applications. Table I summarizes the chip specifications. The execution time of our chip depends on the support 

vector number. For a speaker model with 12500 support vectors, the required clock number to process a speech 

frame (feature extraction + classification) is about 234830 clock cycles. At a clock rate of 100 MHz, the proposed 

chip takes 2.35 ms to process a speech frame. The chip is capable of performing real-time verification as a new 

speech frame is captured each 8 ms. 
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Figure 7:  Chip Specification 

 

CONCLUSION 

In this brief, a pure AISC solution to the SVM-based speaker verification is presented. This ASIC chip is 

characterized by its modular design, high speed, and low power. The architecture consists of a SFE module, an 

SVM module, and a decision module. The SFE module yields the LPC cepstrum vector. The SVM module 

evaluates all of the required kernel values, performs scaling multiplications, and completes the remaining 

operations of decision value evaluation. The decision module computes the overall score of a test utterance to 

make an accepting or rejection decision. With TSMC 0.90 nm CMOS technology, the die size of the proposed 

ASIC chip is roughly 7.9X 7.9mm2. For a 0.9 V power supply, the maximum clock rate is 100 MHz and the power 

dissipation is ∼ 8.12mW . The proposed speaker verification ASIC can be used alone or integrated with other 

biometric chips and peripheral components to form a multimodal biometric system on a chip. 
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